p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.54C24, C42.98C23, C22.107C25, C4.1102- 1+4, Q82⋊10C2, (D4×Q8)⋊23C2, Q8⋊5D4⋊22C2, (C2×C4).97C24, Q8○2(C4.4D4), C4⋊C4.500C23, Q8.42(C4○D4), C4⋊Q8.348C22, (C2×D4).479C23, (C4×D4).241C22, C22⋊C4.30C23, (C4×Q8).228C22, (C2×Q8).457C23, C4⋊D4.117C22, (C2×C42).956C22, C4.4D4.99C22, C22⋊Q8.232C22, C2.31(C2×2- 1+4), C2.38(C2.C25), C42⋊2C2.20C22, (C22×C4).1211C23, C42.C2.170C22, (C22×Q8).364C22, C23.37C23⋊45C2, C42⋊C2.236C22, C22.50C24⋊27C2, C22.36C24⋊19C2, C23.36C23⋊38C2, C23.32C23⋊17C2, C22.49C24⋊16C2, C22.D4.32C22, (C4×C4○D4)⋊36C2, C4.280(C2×C4○D4), (C2×Q8)○(C4.4D4), C2.63(C22×C4○D4), (C2×C4○D4).332C22, SmallGroup(128,2250)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.107C25
G = < a,b,c,d,e,f,g | a2=b2=1, c2=d2=e2=f2=a, g2=b, ab=ba, dcd-1=gcg-1=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 660 in 505 conjugacy classes, 390 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C2×C42, C42⋊C2, C4×D4, C4×Q8, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊Q8, C22×Q8, C2×C4○D4, C4×C4○D4, C23.32C23, C23.36C23, C23.37C23, C22.36C24, Q8⋊5D4, D4×Q8, C22.49C24, C22.50C24, Q82, C22.107C25
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2- 1+4, C25, C22×C4○D4, C2×2- 1+4, C2.C25, C22.107C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 53)(10 54)(11 55)(12 56)(13 57)(14 58)(15 59)(16 60)(17 61)(18 62)(19 63)(20 64)(21 37)(22 38)(23 39)(24 40)(25 41)(26 42)(27 43)(28 44)(29 45)(30 46)(31 47)(32 48)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 19 3 17)(2 18 4 20)(5 39 7 37)(6 38 8 40)(9 13 11 15)(10 16 12 14)(21 36 23 34)(22 35 24 33)(25 29 27 31)(26 32 28 30)(41 45 43 47)(42 48 44 46)(49 61 51 63)(50 64 52 62)(53 57 55 59)(54 60 56 58)
(1 13 3 15)(2 58 4 60)(5 41 7 43)(6 26 8 28)(9 19 11 17)(10 64 12 62)(14 50 16 52)(18 54 20 56)(21 31 23 29)(22 48 24 46)(25 34 27 36)(30 38 32 40)(33 42 35 44)(37 47 39 45)(49 59 51 57)(53 63 55 61)
(1 9 3 11)(2 10 4 12)(5 45 7 47)(6 46 8 48)(13 19 15 17)(14 20 16 18)(21 27 23 25)(22 28 24 26)(29 34 31 36)(30 35 32 33)(37 43 39 41)(38 44 40 42)(49 55 51 53)(50 56 52 54)(57 63 59 61)(58 64 60 62)
(1 23 51 39)(2 22 52 38)(3 21 49 37)(4 24 50 40)(5 17 36 61)(6 20 33 64)(7 19 34 63)(8 18 35 62)(9 25 53 41)(10 28 54 44)(11 27 55 43)(12 26 56 42)(13 29 57 45)(14 32 58 48)(15 31 59 47)(16 30 60 46)
G:=sub<Sym(64)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,19,3,17)(2,18,4,20)(5,39,7,37)(6,38,8,40)(9,13,11,15)(10,16,12,14)(21,36,23,34)(22,35,24,33)(25,29,27,31)(26,32,28,30)(41,45,43,47)(42,48,44,46)(49,61,51,63)(50,64,52,62)(53,57,55,59)(54,60,56,58), (1,13,3,15)(2,58,4,60)(5,41,7,43)(6,26,8,28)(9,19,11,17)(10,64,12,62)(14,50,16,52)(18,54,20,56)(21,31,23,29)(22,48,24,46)(25,34,27,36)(30,38,32,40)(33,42,35,44)(37,47,39,45)(49,59,51,57)(53,63,55,61), (1,9,3,11)(2,10,4,12)(5,45,7,47)(6,46,8,48)(13,19,15,17)(14,20,16,18)(21,27,23,25)(22,28,24,26)(29,34,31,36)(30,35,32,33)(37,43,39,41)(38,44,40,42)(49,55,51,53)(50,56,52,54)(57,63,59,61)(58,64,60,62), (1,23,51,39)(2,22,52,38)(3,21,49,37)(4,24,50,40)(5,17,36,61)(6,20,33,64)(7,19,34,63)(8,18,35,62)(9,25,53,41)(10,28,54,44)(11,27,55,43)(12,26,56,42)(13,29,57,45)(14,32,58,48)(15,31,59,47)(16,30,60,46)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,19,3,17)(2,18,4,20)(5,39,7,37)(6,38,8,40)(9,13,11,15)(10,16,12,14)(21,36,23,34)(22,35,24,33)(25,29,27,31)(26,32,28,30)(41,45,43,47)(42,48,44,46)(49,61,51,63)(50,64,52,62)(53,57,55,59)(54,60,56,58), (1,13,3,15)(2,58,4,60)(5,41,7,43)(6,26,8,28)(9,19,11,17)(10,64,12,62)(14,50,16,52)(18,54,20,56)(21,31,23,29)(22,48,24,46)(25,34,27,36)(30,38,32,40)(33,42,35,44)(37,47,39,45)(49,59,51,57)(53,63,55,61), (1,9,3,11)(2,10,4,12)(5,45,7,47)(6,46,8,48)(13,19,15,17)(14,20,16,18)(21,27,23,25)(22,28,24,26)(29,34,31,36)(30,35,32,33)(37,43,39,41)(38,44,40,42)(49,55,51,53)(50,56,52,54)(57,63,59,61)(58,64,60,62), (1,23,51,39)(2,22,52,38)(3,21,49,37)(4,24,50,40)(5,17,36,61)(6,20,33,64)(7,19,34,63)(8,18,35,62)(9,25,53,41)(10,28,54,44)(11,27,55,43)(12,26,56,42)(13,29,57,45)(14,32,58,48)(15,31,59,47)(16,30,60,46) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,53),(10,54),(11,55),(12,56),(13,57),(14,58),(15,59),(16,60),(17,61),(18,62),(19,63),(20,64),(21,37),(22,38),(23,39),(24,40),(25,41),(26,42),(27,43),(28,44),(29,45),(30,46),(31,47),(32,48)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,19,3,17),(2,18,4,20),(5,39,7,37),(6,38,8,40),(9,13,11,15),(10,16,12,14),(21,36,23,34),(22,35,24,33),(25,29,27,31),(26,32,28,30),(41,45,43,47),(42,48,44,46),(49,61,51,63),(50,64,52,62),(53,57,55,59),(54,60,56,58)], [(1,13,3,15),(2,58,4,60),(5,41,7,43),(6,26,8,28),(9,19,11,17),(10,64,12,62),(14,50,16,52),(18,54,20,56),(21,31,23,29),(22,48,24,46),(25,34,27,36),(30,38,32,40),(33,42,35,44),(37,47,39,45),(49,59,51,57),(53,63,55,61)], [(1,9,3,11),(2,10,4,12),(5,45,7,47),(6,46,8,48),(13,19,15,17),(14,20,16,18),(21,27,23,25),(22,28,24,26),(29,34,31,36),(30,35,32,33),(37,43,39,41),(38,44,40,42),(49,55,51,53),(50,56,52,54),(57,63,59,61),(58,64,60,62)], [(1,23,51,39),(2,22,52,38),(3,21,49,37),(4,24,50,40),(5,17,36,61),(6,20,33,64),(7,19,34,63),(8,18,35,62),(9,25,53,41),(10,28,54,44),(11,27,55,43),(12,26,56,42),(13,29,57,45),(14,32,58,48),(15,31,59,47),(16,30,60,46)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2H | 4A | ··· | 4R | 4S | ··· | 4AI |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2- 1+4 | C2.C25 |
kernel | C22.107C25 | C4×C4○D4 | C23.32C23 | C23.36C23 | C23.37C23 | C22.36C24 | Q8⋊5D4 | D4×Q8 | C22.49C24 | C22.50C24 | Q82 | Q8 | C4 | C2 |
# reps | 1 | 1 | 2 | 3 | 3 | 6 | 2 | 1 | 3 | 9 | 1 | 8 | 2 | 2 |
Matrix representation of C22.107C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
3 | 4 | 0 | 0 | 0 | 0 |
3 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 1 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 1 |
0 | 0 | 0 | 0 | 0 | 3 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 3 |
0 | 0 | 0 | 0 | 1 | 4 |
0 | 0 | 1 | 3 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 4 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 2 |
0 | 0 | 0 | 0 | 4 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 3 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 3 |
0 | 0 | 0 | 0 | 1 | 4 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[3,3,0,0,0,0,4,2,0,0,0,0,0,0,2,0,0,0,0,0,1,3,0,0,0,0,0,0,2,0,0,0,0,0,1,3],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,1,0,0,0,0,3,4,0,0,1,1,0,0,0,0,3,4,0,0],[1,1,0,0,0,0,0,4,0,0,0,0,0,0,4,4,0,0,0,0,2,1,0,0,0,0,0,0,4,4,0,0,0,0,2,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,0,1,0,0],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,1,1,0,0,0,0,3,4,0,0,0,0,0,0,1,1,0,0,0,0,3,4] >;
C22.107C25 in GAP, Magma, Sage, TeX
C_2^2._{107}C_2^5
% in TeX
G:=Group("C2^2.107C2^5");
// GroupNames label
G:=SmallGroup(128,2250);
// by ID
G=gap.SmallGroup(128,2250);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,224,477,232,1430,184,570,136,1684,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=1,c^2=d^2=e^2=f^2=a,g^2=b,a*b=b*a,d*c*d^-1=g*c*g^-1=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations